Some addenda on distance function wavelets

نویسنده

  • W. Chen
چکیده

This report will add some supplements to the recently finished report series on the distance function wavelets (DFW). First, we define the general distance in terms of the Riesz potential, and then, the distance function Abel wavelets are derived via the fractional integral and Laplacian. Second, the DFW Weyl transform is found to be a shifted Laplace potential DFW. The DFW Radon transform is also presented. Third, we present a conjecture on truncation error formula of the multiple reciprocity Laplace DFW series and discuss its error distributions in terms of node density distributions. Forth, we point out that the Hermite distance function interpolation can be used to replace overlapping in the domain decomposition in order to produce sparse matrix. Fifth, the shape parameter is explained as a virtual extra axis contribution in terms of the MQ-type Possion kernel. The report is concluded with some remarks on a range of other issues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

Wavelets for Nonparametric Stochastic Regression with Pairwise Negative Quadrant Dependent Random Variables

We propose a wavelet based stochastic regression function estimator for the estimation of the regression function for a sequence of pairwise negative quadrant dependent random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator are investigated. It is found that the estimators have similar properties to their counterparts st...

متن کامل

Some Results on Convex Spectral Functions: I

In this paper, we give a fundamental convexity preserving for spectral functions. Indeed, we investigate infimal convolution, Moreau envelope and proximal average for convex spectral functions, and show that this properties are inherited from the properties of its corresponding convex function. This results have many applications in Applied Mathematics such as semi-definite programmings and eng...

متن کامل

Some results on Haar wavelets matrix through linear algebra

Can we characterize the wavelets through linear transformation? the answer for this question is certainly YES. In this paper we have characterized the Haar wavelet matrix by their linear transformation and proved some theorems on properties of Haar wavelet matrix such as Trace, eigenvalue and eigenvector and diagonalization of a matrix.

متن کامل

Parameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance

The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره cs.NA/0207062  شماره 

صفحات  -

تاریخ انتشار 2002